## **Driving Rate Effects On Crackling Response**

Karin Dahmen, University of Illinois Urbana-Champaign, DMR 99-76550 (MCC) and DMR 99-72783

## **Examples of "Crackling" Response**

- Earthquakes
- •Magnetization of Disordered Materials (Barkhausen Noise)
- Acoustic Emission (Martensites)
- •Superconducting Vortex Avalanches

## Crackling? (at adiabatically slow driving)

Crackling systems have **universal** power law distributions of **jump** sizes and durations.

Adding a (small) Force Driving Rate  $\Omega$ :

Some systems \* No effect on jump size distributions
Others \* Exponents change linearly with driving rate
(Important for theory, experiments, and applications)

Can be understood generally (see table next slide):



## Jump Size Distribution





The following have gained much expertise through this and related work on crackling noise:
Robert White (graduate), John Carpenter (graduate), Amit Mehta (graduate), Riva Ali Vanderveld (undergrad), Sharon Loverde (undergrad), Alex Travesset (post-doc).

Table: General predictions for the driving rate effects, depending on the adiabatic value  $\alpha_o$  of the universal exponent  $\alpha$  (consistent with experiments on magnets).

Spatial representation of jumps at

Driving Rate  $\Omega=0$ 



And  $\Omega > 0$ 



No spatial overlap!



**Experiments:** 

Durin, Zapperi

**ABBM**